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Nuclear	Forensics	and	Radiochemistry:	Reaction	Networks	
Robert	S.	Rundberg	

	
Abstract:	
In	the	intense	neutron	flux	of	a	nuclear	explosion	the	production	of	isotopes	may	
occur	through	successive	neutron	induced	reactions.	The	pathway	to	these	isotopes	
illustrates	both	the	complexity	of	the	problem	and	the	need	for	high	quality	nuclear	
data.	The	growth	and	decay	of	radioactive	isotopes	can	follow	a	similarly	complex	
network.	The	Bateman	equation	will	be	described	and	modified	to	apply	to	the	
transmutation	of	isotopes	in	a	high	flux	reactor.	A	alternative	model	of	growth	and	
decay,	the	GD	code,	that	can	be	applied	to	fission	products	will	also	be	described.			
	



Nuclear	Forensics	and	
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Reac5on	Networks	

•  A	nuclear	explosion	produces	an	enormous	flux	
of	neutrons.	
– A	neutron	yield	on	the	order	of	a	mole	(6.02E23).	
–  The	chain	reac5on	is	finished	in	a	short	5me,	of	the	
order	of	tens	of	nano-seconds.	

–  The	volume	of	burning	fuel	is	rela5vely	small.	
•  Mul5ple	successive	neutron	induced	reac5ons	
can	occur.	

•  Ac5va5on	of	materials	by	successive	reac5ons	
are	prominent	near	the	fuel.	



Neutron	Reac5ons	with	Ac5nides	
(Uranium)	

235U(n,2n)234U	
Threshold	5.3	MeV	
0.5	barn	@14	MeV	

234U(n,2n)233U	
Threshold	6.9	MeV	
0.4	barn	@14	MeV	

235U(n,fission)	
1.3	barn	@2	MeV	

235U(n,γ)236U	
3	barn	@1	keV	

236U(n,γ)237U	
3	barn	@1	keV	



Neutron	Reac5ons	with	Ac5nides	
(Uranium)	

238U(n,2n)237U	
Threshold	6.2	MeV	
0.9	barn	@14	MeV	

237U(n,2n)236U	
Threshold	5.1	MeV	
0.7	barn	@14	MeV	

238U(n,3n)236U	
Threshold	11.3	MeV	
0.4	barn	@14	MeV	

238U(n,γ)239U	
0.4	barn	@1	keV	

239U(n,γ)240U	
3.0	barn	@1	keV	



Neutron	Reac5ons	with	Ac5nides	
(Plutonium)	

239Pu(n,2n)238Pu	
Threshold	5.7	MeV	
0.2	barn	@	14	MeV	

238Pu(n,2n)237Pu	
Threshold	7.0	MeV	
0.12	barn	@	14	MeV	

239Pu(n,γ)240Pu	
3	barns	@	1	keV	

240Pu(n,γ)241Pu	
3	barns	@	1	keV	

Deple5on	by	fission,		
Threshold	fission	for	even	masses.	



Neutron	Reac5ons	with	the	Ac5nides	
(Americium)	

0.3	percent	241Pu	
Beta	decay	to	241AM	

241Am(n,2n)240Am	
Threshold	6.7	MeV	

241Am(n,γ)242g,mAm	
10	barns	@	1	keV	
0.3	barns	@	1	MeV	

242gAm	beta	decay	
to	242Cm	



Ac5nide	Isotopes	in	Nuclear	Debris	

•  The	equa5ons	for	the	successive	reac5ons	are	
solved	numerically	in	a	code	using	the	Runga-	
Ku_a	method.	

•  The	isotopes	produced	give	the	neutron	
fluence	and	spectrum	that	the	original	
material	was	exposed	to.	



The	Advantage	of	Isotope	Ra5os	
If we assume no burnup the first order equation is

dNA�1

dt
= �1NA�. (1)

Assume constant flux, the solution is

NA�1 = �1NA�t. (2)

The second order reaction is then

dNA�2

dt
= �2 [�1NA�t]�. (3)

The solution is

NA�2 = �1�2NA

Z t

0
�2tdt

=

�1�2NA(�t)2

2

. (4)

Therefore the atom ratio is

NA�2

NA�1
=

�2

2

�t. (5)

1



Growth	and	Decay	

•  The	growth	and	decay	of	radioac5ve	isotopes	
are	similar	to	the	transmuta5on	of	isotopes	in	
high	flux	environment.	

•  The	Bateman	equa5ons	are	useful.	But	
restricted	to	specific	ini5al	condi5ons.	

•  The	Bateman	equa5ons	can	be	modified	to	
include	transmuta5on.	



238U	Natural	Decay	Series		





Bateman	Equa5ons	

Start with a simple parent/ daughter growth and decay.. The equation for the 
daughter is, 

or 
(1) 

The solution of this linear differential equation of the first order may be obtained 
by standard methods and gives 

(2) 



Bateman	Equa5ons	
Consider the grandaughter. The equation for its gro\vth and decay is, 

dN3 = >.2N 2 - >.3N3. (3) 

Eq. 3 is analgous to Eq. 1, but the solution calls for more labor, because N2 
is a much more complicated function than N 1. T he great grandaughter is even 
more complicated. Fortunately, H. Bateman has given the solution for a chain 
of n members with the special assumption that at t = 0 the parent substance 
alone is present, that is, Ng = NJ = · · · = = 0. T his solution is 

Nn = C 1e->.it + C2e->.2 t + · · · Cne->.nt, 

C _ >.1>.2 · · · An-1 No 
1 - 1 (>.2 - A1){>.3 - A1) · · · (>.n - A1) ' 

>.1>.2 · · · An-1 o 
C2 = , , _ l_\fl- - l-\ . . . fl _ , \N1 ,andsoon. 

(4) 



Bateman	Applied	to	Transmuta5on	
Successive neutron reactions in a high flux, such as, a high flux reactor can be 
solved using the Bateman equations, as well. T he rate of disappearence of an 
isotope in a neutron flux is 

dN 
- dt = (>. + nva)N = AN. (5) 

Consider a parent daughter pair. The parent disappears by both transmutation 
and decay. But the daughter grows by decay of the parent only and disappears 
by both processes. In general notation, 

dNi+1 
= >.iNi - Ai+1Ni+1· 

ui 

We replace >.i by a modified decay constant A: = >.: + nva: , \Vere only the 
decay constant of transmuation term that lead to next progeny in the chain is 
used. 



Bateman	Applied	to	Transmuta5on	

With this nomenclature the Bateman equation becomes, 

Nn = C1e-A1t + C2e-A2t + ... Cne-A"'t, 

AiA2 · · · o 
C1 = ( )(A ) ( ) N 1 , A2 - Ai 3 - Ai · · · An - Ai 

AiA2 · · · o 
C2 = (A1 - A2)(A3 - A2) ... (An - A2) Ni' and so on. 

(6) 



An	Example	

As an illustration, we compute the amount of 3.15-d 199 Au formed by two 
successive (n, y) reactions when 1 g 197Au is exposed for 30 h in a neutron 
flux of 1 x l 0 14 cm - 2 s-•. The chain of reactions is 

u=99b u=2.SxJ04b 
197 Au ____ ..,.. 198 Au-------- 199 Au 

n, 'Y 11, 'Y 

We use (5-12) for this three-membered chain: 



The numerical values to be substituted are 

and 

t = 1. 08 x 105 s' 
nv = 1014 cm-2 s-•, 

c.Tt97 = 9.9 x io-23 cm2, 

CT19s = 2.5 x 10-20 cm2, 

= 6.02 x .1023 = 3 05 x 1021 
197 197 . . , 

A i'91 = A191 = nvu191 = 9.9 x io-9 s- 1, 

A19s =A 19s + nvu19s = 3.0 x 10 ... 6 + 2.5 x 10-6 

= 5.5 x 10-6 s- 1, 

A t9s nvcr19s = 2.5 x 10- 6 s- •, 

Ai99 = A199 = 2.55 x 10-6 s- 1• 



Using these values, we get 

( 

e-0.00101 
N 199 = 7 .85 x 107 . - - - _ . -

e - o . .594 e -o.21s ) 
+ 5.5 x 10- 6 x 2.95 x 104 -2.55 x 10-6 x 2.95 x 104 

= 7.55 x 107(7.12 x 1010 + 3.40 x 1010 - 1.01 x 1011) = 3.2 x 1017• 

The disintegration rate of 199 Au at the end of the irradiation is .A 199N 199 = 
0.82 x 1012 s-1• For comparison we compute the disintegration rate of 198Au 
in the sample [again from for a two-membered chain]: 

-A,911 e-A19$' ) 

A19SN198 = A193nvcr197_Nil97(A,:8 - A 197 + A197 - A198 

= 9 06 X )07 Q.999- Q.552 = 7 36 X )012 -I · . s .s x 1 o-6 • s · 
Thus about 10 percent of the radioactive disintegrations in the sample occur in 
•99 Au. 



Fission	Does	Not	Always	Meet	the	
Ini5al	Condi5ons	



The	GD	Code	

The general differential equations for radioactive decay and growth 
dN1 = a11N1 +r1(t) 

dN2 = a21N1 + a22N2 +r2(t) 

dNn N + .. . + annNn = anl 1 +rn(t) 

(1) 

where Ni ( t) is the number of atoms of nuclide i existing at time t, aij, i > j are 
constants, and ri's are the rates of formation from sources other than by decay 
of isotopes i. A specialized form ri(t) = Yif(t) is used in the Los Alamos code 
GD, so that the rates have time independent ratios to each other. The Yi's are 
called fractional independent yields. 



GD	Code	Con5nued	

where A is the matrix of aij's, N and Y are column vectors and f(t) is a 
scalar. Equation (2) has the solution 

N (t) = e(t- r )A N (T) + l t e<t- s)AJ(t)Y ds (3) 

There is a non singular matrix P such that 

p-1AP = J (4) 
is diagonal. Th GD code finds P . T he solution is then 

N (t) = P diag[ea11 (t- r), ... ,eann(t- r) ] p-IN (T) 

+ p (lt diag [ea11(t- s), .. . ,eann(t- s)] J(s)ds) p-l y (5) 



The	GD	Code	Solu5on	

Define Fi ( t) by 

Fi(t - T) = 1t ea •• (t - s ) f(s)ds (6) 

then the solution is 
N(t) = p diag [ea11(t- r }, ... ,eann (t - r }] p-lN(T) 

+ P diag [F1(t - T), . .. ,Fn(t - T)j p-ly (7) 

The function f ( s) is taken to be piece\\'ise constant with fj on time intervals 
Uj to Wj. With this specialization it follows that 

ea .. t 
Fi(t - T) = - n ·· L fj (e- aiiWj - e - a" Uj). 

ii j 
(8) 


